4. The energy required to break one mole of CI–CI bonds in CI₂ is 242 kJ mol⁻¹. The longest wavelength of light capable of breaking a single CI–CI bond is

 $(C = 3 \times 10^8 \text{ m/s and N}_A = 6.02 \times 10^{23} \text{ mol}^{-1})$

- (1) 494 nm
- (2) 594 nm
- (3) 640 nm
- (4) 700 nm

Solution:

We have B.E = 242KJ/Mol

$$E = h_c N_A / \lambda$$

$$\lambda = h_c N_A / E$$

$$= 3 \times 10^8 \times 6.626 \times 10^{-34} \times 6.02 \times 10^{23} / (242 \times 10^3)$$

$$= 0.494 \times 10^{-3} \times 10^{3}$$

$$= 494 \text{ nm}$$

Hence option (1) is the answer.